Search results for "Non-Equilibrium thermodynamic"

showing 10 items of 126 documents

Equilibrium fluid-crystal interfacial free energy of bcc-crystallizing aqueous suspensions of polydisperse charged spheres

2015

The interfacial free energy is a central quantity in crystallization from the meta-stable melt. In suspensions of charged colloidal spheres, nucleation and growth kinetics can be accurately measured from optical experiments. In previous work, from this data effective non-equilibrium values for the interfacial free energy between the emerging bcc-nuclei and the adjacent melt in dependence on the chemical potential difference between melt phase and crystal phase were derived using classical nucleation theory. A strictly linear increase of the interfacial free energy was observed as a function of increased meta-stability. Here, we further analyze this data for five aqueous suspensions of charg…

fluid-crystalMaterials scienceNucleationFOS: Physical sciencesThermodynamicsNon-equilibrium thermodynamicsCondensed Matter - Soft Condensed Matter01 natural scienceslaw.inventionColloidlawMetastability0103 physical sciencesCrystallization010306 general physicsCondensed Matter - Statistical MechanicsCondensed Matter - Materials ScienceAqueous solutionStatistical Mechanics (cond-mat.stat-mech)010304 chemical physicsMaterials Science (cond-mat.mtrl-sci)Condensed Matter::Soft Condensed Matterpolydisperseinterfacial free energySoft Condensed Matter (cond-mat.soft)SPHERESClassical nucleation theoryPhysical Review E
researchProduct

Three-body correlations and conditional forces in suspensions of active hard disks

2017

Self-propelled Brownian particles show rich out-of-equilibrium physics, for instance, the motility-induced phase separation (MIPS). While decades of studying the structure of liquids have established a deep understanding of passive systems, not much is known about correlations in active suspensions. In this work we derive an approximate analytic theory for three-body correlations and forces in systems of active Brownian disks starting from the many-body Smoluchowski equation. We use our theory to predict the conditional forces that act on a tagged particle and their dependence on the propulsion speed of self-propelled disks. We identify preferred directions of these forces in relation to th…

PhysicsWork (thermodynamics)Collective behaviorSmoluchowski coagulation equationNon-equilibrium thermodynamicsFOS: Physical sciencesContext (language use)02 engineering and technologyFunction (mathematics)Condensed Matter - Soft Condensed Matter021001 nanoscience & nanotechnology01 natural sciencessymbols.namesakeRange (mathematics)0103 physical sciencessymbolsSoft Condensed Matter (cond-mat.soft)Statistical physics010306 general physics0210 nano-technologyBrownian motion
researchProduct

Vortex density waves and high-frequency second sound in superfluid turbulence hydrodynamics

2010

In this paper we show that a recent hydrodynamical model of superfluid turbulence describes vortex density waves and their effects on the speed of high-frequency second sound. In this frequency regime, the vortex dynamics is not purely diffusive, as for low frequencies, but exhibits ondulatory features, whose influence on the second sound is here explored.

PhysicsNon-equilibrium thermodynamicsTurbulenceQuantum vortexFOS: Physical sciencesGeneral Physics and AstronomyNon-equilibrium thermodynamicsVorticityLiquid helium IISuperfluid turbulenceVortexCondensed Matter - Other Condensed MatterSuperfluidityClassical mechanicsSecond soundSettore MAT/07 - Fisica MatematicaSuperfluid helium-4Other Condensed Matter (cond-mat.other)
researchProduct

Exponential Relaxation out of Nonequilibrium

1989

Simulation results are presented for a quench from a disordered state to a state below the coexistence curve. The model which we consider is the Ising model but with the dynamics governed by the Swendsen-Wang transition probabilities. We show that the resulting domain growth has an exponential instead of a power law behaviour and that the system is non-self-averaging while in nonequilibrium. The simulations were carried out on a parallel computer with up to 128 processors.

BinodalPhysicsCondensed Matter::Statistical MechanicsGeneral Physics and AstronomyRelaxation (physics)Non-equilibrium thermodynamicsIsing modelStatistical physicsState (functional analysis)Power lawDomain (mathematical analysis)Exponential functionEurophysics Letters (EPL)
researchProduct

Reversibility and Diffusion in Mandelythiamin Decarboxylation. Searching Dynamical Effects in Decarboxylation Reactions

2012

Decarboxylation of mandelylthiamin in aqueous solution is analyzed by means of quantum mechanics/molecular mechanics simulations including solvent effects. The free energy profile for the decarboxylation reaction was traced, assuming equilibrium solvation, while reaction trajectories allowed us to incorporate nonequilibrium effects due to the solvent degrees of freedom as well as to evaluate the rate of the diffusion process in competition with the backward reaction. Our calculations that reproduce the experimental rate constant show that decarboxylation takes place with a non-negligible free energy barrier for the backward reaction and that diffusion of carbon dioxide is very fast compared…

Models MolecularDecarboxylationDiffusionNon-equilibrium thermodynamicsThermodynamicsPhotochemistryDecarboxylationBiochemistryCatalysisCatalysisDiffusionMandelythiamin DecarboxylationColloid and Surface ChemistryReaction rate constantThiaminePhysics::Chemical PhysicsChemistrySolvationWaterGeneral ChemistrySolutionsDiffusion processMandelic AcidsQuantum TheoryThermodynamicsDecarboxylation ReactionsSolvent effects
researchProduct

Thermodynamic pressure in nonlinear nonequilibrium thermodynamics of dilute nonviscous gases.

2000

In this paper, using extended thermodynamics, we build up a nonlinear theory for a dilute nonviscous gas under heat flux. The fundamental fields are the density, the velocity, the internal energy density, and the heat flux. The constitutive theory is builtup without approximations. We single out the nonlinear complete expressions of the Gibbs equation and of the nonequilibrium pressure. In particular, we determine the complete expressions furnished by the theory for the nonequilibrium pressure tensor and thermodynamic pressure, i.e., the derivative of the nonequilibrium internal specific entropy with respect to the specific volume, times the nonequilibrium temperature. In a second-order app…

Physicssymbols.namesakeEntropy (classical thermodynamics)Nonlinear systemInternal energyFundamental thermodynamic relationHeat fluxGibbs–Helmholtz equationsymbolsThermodynamicsNon-equilibrium thermodynamicsThermal conductionPhysical review. E, Statistical, nonlinear, and soft matter physics
researchProduct

Noise delayed decay of unstable states: theory versus numerical simulations

2004

We study the noise delayed decay of unstable nonequilibrium states in nonlinear dynamical systems within the framework of the overdamped Brownian motion model. We give the exact expressions for the decay times of unstable states for polynomial potential profiles and obtain nonmonotonic behavior of the decay times as a function of the noise intensity for the unstable nonequilibrium states. The analytical results are compared with numerical simulations.

PhysicsPolynomialStatistical Mechanics (cond-mat.stat-mech)FOS: Physical sciencesGeneral Physics and AstronomyNoise intensityNon-equilibrium thermodynamicsStatistical and Nonlinear PhysicsFunction (mathematics)Nonlinear dynamical systemsnumerical simulationsBrownian motion modelStatistical physicsCondensed Matter - Statistical MechanicsMathematical PhysicsNoise (radio)
researchProduct

Towards a nonequilibrium thermodynamic description of incoherent nonlinear optics

2007

pa href="http://oe.osa.org/virtual_issue.cfm?vid=36"Focus Serial: Frontiers of Nonlinear Optics/a/pThis concise review is aimed at providing an introduction to the kinetic theory of partially coherent optical waves propagating in nonlinear media. The subject of incoherent nonlinear optics received a renewed interest since the first experimental demonstration of incoherent solitons in slowly responding photorefractive crystals. Several theories have been successfully developed to provide a detailed description of the novel dynamical features inherent to partially coherent nonlinear optical waves. However, such theories leave unanswered the following important question: Which is the long term…

PhysicsWave propagationbusiness.industryThermodynamic equilibriumNon-equilibrium thermodynamicsOptical field01 natural sciencesAtomic and Molecular Physics and Optics010305 fluids & plasmasIrreversible processOpticsQuantum mechanicsNonlinear medium0103 physical sciencesThermodynamic limitCoherent states010306 general physicsbusinessComputingMilieux_MISCELLANEOUS
researchProduct

Nonlinear extended thermodynamics of a dilute nonviscous gas

2002

This paper deals with further developments of a nonlinear theory for a nonviscous gas in the presence of heat flux, which has been proposed in previous papers, using extended thermodynamics. The fundamental fields used are the density, the velocity, the internal energy density, and the heat flux. Using the Liu procedure, the constitutive theory is built up without approximations and the consistence of the model is showed: it is shown that the model is determined by the choice of three scalar functions which must satisfy a system of partial differential equations, which always has solutions. Different changes of field variables are carried out, using different Legendre transformations, passi…

Entropy (classical thermodynamics)Partial differential equationInternal energyHeat fluxModeling and SimulationModelling and SimulationNon-equilibrium thermodynamicsThermodynamicsThermodynamic temperatureExtended irreversible thermodynamicsAbsolute zeroMathematicsComputer Science ApplicationsMathematical and Computer Modelling
researchProduct

Reinforcement learning approach to nonequilibrium quantum thermodynamics

2021

We use a reinforcement learning approach to reduce entropy production in a closed quantum system brought out of equilibrium. Our strategy makes use of an external control Hamiltonian and a policy gradient technique. Our approach bears no dependence on the quantitative tool chosen to characterize the degree of thermodynamic irreversibility induced by the dynamical process being considered, require little knowledge of the dynamics itself and does not need the tracking of the quantum state of the system during the evolution, thus embodying an experimentally non-demanding approach to the control of non-equilibrium quantum thermodynamics. We successfully apply our methods to the case of single- …

---Computer scienceFOS: Physical sciencesGeneral Physics and AstronomyNon-equilibrium thermodynamics01 natural sciencesSettore FIS/03 - Fisica Della Materia010305 fluids & plasmassymbols.namesakeQuantum stateSHORTCUTS0103 physical sciencesQuantum systemReinforcement learningStatistical physics010306 general physicsQuantum thermodynamicsCondensed Matter - Statistical MechanicsADIABATICITYQuantum PhysicsStatistical Mechanics (cond-mat.stat-mech)Entropy productionENTROPYsymbolsQuantum Physics (quant-ph)Hamiltonian (quantum mechanics)
researchProduct